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Regression testing for wrapper maintenanceNicholas KushmerickDepartment of Computer Science, University College Dublin, Dublin 4, Irelandnick@ucd.ieAbstractRecent work on Internet information integration as-sumes a library of wrappers, specialized information ex-traction procedures. Maintaining wrappers is di�cult,because the formatting regularities on which they relyoften change. The wrapper veri�cation problem is todetermine whether a wrapper is correct. Standard re-gression testing approaches are inappropriate, becauseboth the formatting regularities and a site's underly-ing content may change. We introduce rapture, afully-implemented, domain-independent veri�cation al-gorithm. rapture uses well-motivated heuristics tocompute the similarity between a wrapper's expectedand observed output. Experiments with 27 actual In-ternet sites show a substantial performance improve-ment over standard regression testing.IntroductionSystems that integrate heterogeneous informationsources have recently received substantial research at-tention (e.g. (Wiederhold 1996; Knoblock et al. 1998;Levy et al. 1998)). A `movie information' integrator,for example, might provide a single interface to the re-view, cast list, and schedule information available fromdozens of Internet sites.Such systems rely on a library of wrappers, specializedprocedures for extracting the content from a particularsite. For example, the site in Fig. 1 lists countries andtheir telephone country codes. The information extrac-tion task is to identify the hcounty; codei pairs in thissite's pages. The ccwrap wrapper does so by scanningfor the delimiters <B>� � �</B> and <I>� � �</I>, whichworks because of a formatting regularity: countriesare bold and codes are italic.Scalability is the main challenge to building wrap-pers. While they are usually rather short programs,writing wrappers by hand is tedious and error-prone.Recently, there has been substantial progress on wrap-per induction, techniques for automatically generat-ing wrappers (Kushmerick, Weld, & Doorenbos 1997;Kushmerick 1997; Muslea, Minton, & Knoblock 1998;Hsu & Dung 1998).Copyright c
1999, American Association for Arti�cialIntelligence (www.aaai.org). All rights reserved.

However, this work ignores an important complica-tion. Suppose the owners decide to `remodel' the coun-try/code site, so that pages look like pd instead of pa{pc.The ccwrap wrapper fails for pd, because the formattingregularities ccwrap exploits no longer hold.Wrapper maintenance is the task of repairing a bro-ken wrapper. For example, given pd, a wrapper main-tenance system would modify ccwrap to expect italiccountries and bold codes.Wrapper maintenance is our ultimate goal. In thispaper, we de�ne an important subproblem, the wrap-per veri�cation problem, and present rapture, a fully-implemented, domain-independent, heuristic algorithmfor solving this problem.Wrapper veri�cation involves determining whether awrapper correctly processes a given page. Our approachis based on the black-box or regression testing paradigm(e.g. (Beizer 1995)): we give the wrapper a page forwhich the correct output is known, and check that thewrapper in fact generates this output.The simplest such regression tester is strawman. Toverify a wrapper, strawman invokes it on the pagereturned in response to a given query, and also on anearlier page for the same query when the wrapper wasknown to be correct. strawman declares the wrapperveri�ed if the two outputs are identical.While strawman works for some Internet sites, itfails for most. strawman assumes that sites alwaysreturn the same information for a �xed query. This as-sumption sometimes holds (e.g. a list of historical com-modity prices), but is often violated (e.g. a site servingtoday's prices). Wrapper veri�cation is thus compli-cated by two moving targets: the formatting regulari-ties of the pages, and the site's underlying content.In the remainder of this paper, we formalize the wrap-per veri�cation problem, describe rapture,and empir-ically compare rapture's performance to strawman.Problem statementOur work is based on an a simple yet generic informa-tion extraction task: a site accepts a query, returninga page in response. In our implementation, sites areHTTP servers, queries are CGI form values, and pagesare HTML text. (While the our examples are posed in
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  pa’ s HTML source (pb’ s and pc’s are similar):
 <HTML><BODY>
 <B>Argentina</B>, <I>54</I><BR>
 <B>Bangladesh</B>, <I>880</I><BR>
 <B>Croatia</B>, <I>385</I><BR>
 <B>Denmark</B>, <I>45</I><BR>
 <HR><I>Stop</I></BODY></HTML>

  pd’s HTML source:
 <HTML><BODY>
 <I>Kenya</I>, <B>254</B><BR>
 <I>Libya</I>, <B>218</B><BR>
 <I>Mexico</I>, <B>52</B><BR>
 <HR><I>Stop</I></BODY></HTML>

 The ccwrap wrapper is correct for pa, pb
 and pc, but incorrect for pd:
  procedure ccwrap:
     while there are more occurrences of ‘<B>’
        skip to next ‘<B>’
        extract country through next ‘</B>’
        skip to next ‘<I>’
        extract code through next ‘</I>’
     return all extracted 〈country,code〉 pairs

Figure 1: An example Internet site listing countries and their telephone country codes, and the ccwrap wrapper.terms of HTML, this is for simplicity only. Our tech-niques do not assume that pages are HTML.)A wrapper is an information extraction proceduretailored to a particular site. A wrapper takes as in-put a page, and outputs a label, a representation of thepage's content. We assume a standard relational datamodel: a page's label is a set of tuples, each a vectorof K attributes. For example, K = 2 for page pa, andits label is `a = fhArgentina; 54i ; hBangladesh; 880i ;hCroatia; 385i ; hDenmark; 45ig.For wrapper w and page p, we write w(p) = ` toindicate that w returns label ` when invoked on p.As we are concerned with cases in which a wrap-per's output is wrong, we say that a w is cor-rect for p i� p's label is in fact w(p). Thus,ccwrap is incorrect for pd, because ccwrap(pd) =fh254; Libyai, h218; Mexicoi, h52; Stopig instead offhHong Kong; 254i, hLibya; 218i, hMexico; 52ig.Wrapper veri�cation is the problem of determiningwhether a wrapper is correct. We assume access toa collection of previously veri�ed pages for which thewrapper is known to be correct. We also assume thatwe know the query used to generate each veri�ed page.The wrapper veri�cation problem is the following.The input is a wrapperw, page p, query q, sequence L =f`1; : : : ; `Mg of labels, and sequence Q = fq1; : : : ; qMgof queries. The output should be true if w is correctfor p and false otherwise.The intent is that page p was retrieved using query q,L contains the veri�ed labels, and the page to which la-bel `i 2 L corresponds was retrieved with qi 2 Q. Whilequeries can be structured objects, rapture treats them\atomically", only checking whether two queries areequal. The RAPTURE algorithmrapture is a domain-independent, heuristic algo-raithm for solving the wrapper veri�cation problem.rapture compares the veri�ed labels with the labeloutput by the wrapper being veri�ed.Speci�cally, rapture compares the value of variousnumeric features of the strings comprising the label out-put by the wrapper. For example, the word count fea-ture is 2 for Great Britain, and 1 for Iraq. rapture

computes the values of such features for each extractedattribute.1These values are compared with those for the veri-�ed label attributes. The mean feature values are cal-culated, and then the probabilities that each extractedattribute's feature values agree with these values arecalculated. Each such probability captures the strengthof the evidence provided by a particular feature thata speci�c attribute was correctly extracted. Finally,the individual probabilities are combined, producing anoverall probability that the wrapper is correct for thepage.We use upper-case letters (e.g. R) for random vari-ables and lower-case (e.g. r) for values of such vari-ables. �R is R's mean, and �R is R's standard de-viation. Let R be normally distributed with parame-ters �R and �R; P[r;�R;�R] is the probability that Requals r, and P[�r;�R;�R] is the probability that Rdoes not exceed r. These probabilities are taken to bethe probability and cumulative density functions of thenormal distribution: P[r;�R;�R] = 1�Rp2� e� 12 ( r��R�R )2and P[�r;�R;�R] = R r�1P[r0;�R;�R]dr0.ExampleWe begin by demonstrating rapture on the coun-try/code example. Suppose ccwrap has been veri�edfor pages pa and pb, and we want to verify ccwrap forpages pc and pd. Since ccwrap is in fact correct for pc,rapture(pc; ccwrap; f`a; `bg) should return true; incontrast, rapture(pd; ccwrap; f`a; `bg) should returnfalse. (We temporarily ignore the q and Q inputs torapture; we extend the algorithm below.)Step 1: Number-of-tuple distribution parame-ters. rapture assumes that the number of tuples ina label is described by the normally distributed ran-dom variable N . rapture computes the distributionparameters �N and �N by treating the number of tu-ples n in pa and pb as samples of N (column 2 will be1A wrapper's execution can be unde�ned. For example,ccwrap fails if it sees a <B> with no subsequent </B>, <I> or</I>. For simplicity, we do not discuss this scenario further,though our implementations of strawman and raptureimmediately reject failed wrappers.
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Kushmerick, AAAI-99. 3explained in Step 5): n P[n; �N ;�N ]pa 4 0.44pb 3 0.44�N=3:5�N=0:71Step 2: Feature value distribution parameters.rapture examines the text fragments extracted frompa and pb, and computes the values of a set of features.These values are assumed to be normally distributedfor each feature/attribute combination.In this example, we consider two features: wordcount, and mean word length. For example, ElSalvador has 2 words and mean word length 6. rap-ture reasons about a unique random variable for eachfeature/attribute combination: C1 is the word count ofthe �rst attribute (country), C2 is the word count ofthe second attribute (code), U1 is the country's meanword length, and U2 is the code's mean word length.rapture uses pa and pb to estimate the 8 distri-bution parameters. For example, �C1 = 1:1 indicatesthat country names usually contain a single word, while�U2 = 0:52 indicates that the mean word length of codeshave relatively low variance (columns 3 and 5 will beexplained in Step 5):country c P[c; �C1 ;�C1 ] u P[u; �U1 ;�U1 ]Argentina 1 0.98 9 0.12pa Bangladesh 1 0.98 10 0.057China 1 0.98 5 0.12Denmark 1 0.98 7 0.22El Salvador 2 0.081 6 0.19pb France 1 0.98 6 0.19Greece 1 0.98 6 0.19�C1=1:1 �U1=7:0�C1=0:38 �U1=1:8code c P[c; �C2 ;�C2 ] u P[u; �U2 ;�U2 ]54 1 1.0 2 0.54pa 880 1 1.0 3 0.42385 1 1.0 3 0.4232 1 1.0 2 0.54503 1 1.0 3 0.42pb 33 1 1.0 2 0.5430 1 1.0 2 0.54�C2=1:0 �U2=2:4�C2=0:0 �U2=0:53Step 3: Feature probabilities. rapture usesthe distribution parameters from Steps 1{2 to compareccwrap's labels for pa and pb, with those for pc and pd.Recall that ccwrap is correct for pc but incorrect for pd.rapture begins by examining the number of tuplesextracted by ccwrap: n = 3 for both pages. In Step1, we estimated N 's distribution parameters �N = 3:5and �N = 0:71. We can thus compute the probabilityof the observed number of tuples n for each page:n P[n; �N ;�N ]pc 3 0.44pd 3 0.44rapture then computes the feature values for theextracted fragments. Using the distribution parame-ters from Step 2, we compute the probability of each

observed feature value. In the example, we compute12 probabilities each for pc and pd: 1 per feature, foreach of the 3 extracted fragments, for each of the 2 at-tributes. For example, P[2;�C1 ;�C1 ] = 0:081 indicatesthat a country name is somewhat unlikely to contain 2words, while P[4;�U2 ;�U2 ] = 9:9�10�4 indicates thatthe mean word length of a code is rarely 4.country c P[c; �C1 ;�C1 ] u P[u; �U1 ;�U1 ]Hong Kong 2 0.081 4 0.057pc Ireland 1 0.98 7 0.22Japan 1 0.98 5 0.12254 1 0.98 3 0.020pd 218 1 0.98 3 0.02052 1 0.98 2 5:1�10�3code c P[c; �C2 ;�C2 ] u P[u; �U2 ;�U2 ]852 1 1.0 3 0.42pc 353 1 1.0 3 0.4281 1 1.0 2 0.54Libya 1 1.0 5 7:0�10�6pd Mexico 1 1.0 6 1:5�10�10Stop 1 1.0 4 9:9�10�4Step 4: Veri�cation probability. Each probabil-ity in Step 3 represents the evidence from one featurethat a particular text fragment is correct. rapturenow combines this evidence conjunctively, deriving anoverall veri�cation probability that ccwrap is correct.rapture assumes independence, and derives the veri�-cation probability by multiplying the conjuncts' proba-bilities. (Our experiments consider other assumptions.)The following table shows the veri�cation probability vfor each page (column 3 will be explained in Step 5):probabilities from Step 3 v P[�v;�V ; �V ]pc .44, .081, .98, .98, .057, .22,.12, 1, 1, 1, .42, .42, .54 4:9�10�6 0.26pd .44, .98, .98, .98, .020, .020,5:1�10�3, 1, 1, 1, 7:0�10�6,1:5�10�10 , 9:9�10�4 8:8�10�25 0.18Note that pd has a low v because the mean word lengthof the countries is so small, and so large for the codes.Step 5: Evaluating veri�cation probability. Asexpected, ccwrap is much more likely to be correct forpa than for pd. To complete our analysis, we couldsimply compare such probabilities to a �xed threshold.However, since we assumed independence and normal-ity, the calculated veri�cation probabilities may deviategreatly from their `true' values.To address this problem, we treat each veri�cationprobability v as a sample of a normal random variableV . To calculate �V and �V , we repeat Step 4 for paand pb: probabilities from Steps 1{2 vpa .44, .98, .98, .98, .98, .12, .057, .12, .22, 1,1, 1, 1, .54, .42, .42, .54 3:8�10�6pb .44, .081, .98, .98, .19, .19, .19, 1, 1, 1,.42, .54, .54 2:9�10�5�V =1:6�10�5�V =1:8�10�5At this point, rapture can compare the veri�cationprobabilities with those of pc or pd. The simplest ap-proach is to return false if v < �V . However, we would
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Kushmerick, AAAI-99. 4function rapture(wrapper w, page p, label set L)if LabelPr(w(p); L) < � return false else return truefunction LabelPr(label `, label set L)h�V ; �V i  VerifPrParams(L)return P[�VerifPr(`; L); �V ; �V ]function VerifPrParams(label set L)probs  fVerifPr(`; L) j `2Lgcompute �V and �V from probsreturn h�V ; �V ifunction VerifPr(label `, label set L)h�N ; �N i ; �: : : ; 
�Fi;k ; �Fi;k� ; : : :	  FeaParams(L)q  P[j`j; �N ;�N ]probs  fqg [a]for each feature fi 2 Ffor each attribute 1 � k � Kfor each tuple h: : : ; sk; : : :i 2 `q  P[fi(sk);�Fi;k ;�Fi;k ]probs  probs [ fqgreturn A(probs) [b]function FeaParams(label set L)values  fj`j j `2Lg [c]compute �N and �N from valuesfor each feature fi 2 Ffor each attribute 1 � k � Kvalues  ffi(s) j s in column k of a label in Lgcompute �Fi;k and �Fi;k from valuesreturn h�N ; �N i, �: : : ; 
�Fi;k ; �Fi;k� ; : : :	Figure 2: The rapture algorithm.like to be able to adjust rapture's `pessimism', mak-ing it more or less likely to declare a wrapper correct.We thus use the cumulative normal density function toevaluate v. Speci�cally, the third column in Step 4 liststhe probabilities that V < v, for pc and pd. rapturethen compares this probability to a threshold � . Forexample, if � = 14 , rapture returns true for pc andfalse for pd. Note that � = 12 corresponds to the sim-ple approach of returning false if v < �V .DetailsWith the ideas underlying rapture now in place, welist the rapture algorithm in detail; see Fig. 2. Themain subroutine is verifPr, which computes a label'sveri�cation probability v.rapture refers to three parameters: a threshold �against which veri�cation probabilities are compared; afeature set F , where each feature is function from astring to a number; and a dependency assumptionA, a function from a set of numbers to a number.Feature set Frapture is parameterized by a feature set F =f: : : ; fi; : : :g. Each feature fi is a function from a stringto a number. Ideally, features can be rapidly computed(so rapture runs quickly) and are not domain speci�c(so rapture can be applied without modi�cation tonew sites).

We used the following nine features in our experi-ments (numbers in parentheses are values for the string`20 Maple St.'): digit density: fraction of numericcharacters ( 212 = 0:167); letter density, fraction ofletters ( 712 = 0:583); upper-case density, fraction ofupper-case letters ( 212 = 0:167); lower-case density( 512 = 0:417); punctuation density, ( 112 = 0:083);HTML density, fraction of < and > characters ( 012 =0); length (12); word count (3); and mean wordlength ( 2+5+23 =3).Dependency assumption AAbstractly, rapture reasons about E events e1, . . . ,eE. e27 might represent the event `the number of wordsin the third extracted country is consistent with thecountries extracted from the veri�ed pages'. The al-gorithm has derived P[e1], . . . , P[eE], and must com-pute the probability that all feature values are consis-tent with the veri�ed labels, P[^iei]. rapture uses thedependency assumption A to compute this probability;see Step 4 above and line [b] in Fig. 2.Computing P[^iei] exactly requires knowledge of thedependencies between the ei. In principle, this infor-mation could be derived for our domain, resulting ina set of conditional probabilities for exactly calculat-ing P[^iei] = P[e1]P[e2je1] � � �P[eEjeE�1; : : : ; e1]. Butas this analysis would be extremely cumbersome, weinstead simply make assumptions about the dependen-cies of the domain. While the resulting probability canbe inaccurate, our experiments demonstrate that theseassumptions yield reasonable performance.We have investigated three speci�c assumptions:the independence, entailment, and equivalence assump-tions. Each corresponds to a particular function forcomputing P[^iei] from P[e1], . . . , P[eE].Independence assumption: If the ei are indepen-dent, then P[^iei] = Qi P[ei].Entailment assumption: If there exists an 1 � I �E such that eI logically entails every other ei, thenP[^iei] = mini P[ei]. The entailment assumptionpresumes that one piece of evidence (e.g., perhaps thenumber of extraced tuples) completely determines therest.Equivalence assumption: If the ei are all logicallyequivalent, then P[^iei] = P[e1] = � � � = P[eE].Under the equivalence assumption, any piece of evi-dence is as reliable as any other. This assumption cannot be invoked directly, because the P[ei] are often un-equal. rapture treats the P[ei] as noisy samples of the`true' value, which is estimated as the sample's geomet-ric mean: P[^iei] = (Qi P[ei])1=E .Using q and QIn the presentation so far, we have ignored rapture's qand Q inputs. Recall that Q is the sequence of queriesused to generated the veri�ed labels L, and q is thequery from which input page p was generated.
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Kushmerick, AAAI-99. 5rapture uses Q and q to improve veri�cation ina relatively simple manner. The intuition is that thenumber of tuples in p's label often depends on q. If thesite lists people, for example, queries for Jones returnmore hits than for Jablonsky. If this dependency isignored, rapture will assess the evidence provided bythe number of tuples (P[n;�N ; �N ]) incorrectly.Extending rapture to make use of this informationis straightforward. Arguments Q and q are added toevery function, and then line [c] in Fig. 2 is changedso that only veri�ed labels with query q are used toestimate �N and �N : `values fj`ij j `i2L ^ qi=qg'.EvaluationMethodology. We tested rapture on 27 actual In-ternet sites. We systematically varied F , A and � , andcompared rapture's performance with the strawmanalgorithm described earlier. Our experiment was de-signed to model the scenario in which the goal is to con-tinually monitor whether a site's wrapper has changed.The sites were chosen to be representative of the sortthat the information integration community wants towrap.2 Fifteen queries were selected for each site. Eachquery is a keyword appropriate to the site. For example,ALTA's queries included frog, dog, happy, apple andtomato. While many sites allow complex queries, we donot think that focusing on keyword queries invalidatesour veri�cation results.As shown in Fig. 3, the 27 � 15 queries were issuedapproximately every 3 days over 6 months (5{10/1998);in total, 23,416 pages were gathered.We then generated a wrapper for every page usingsemi-automated techniques, extracting between K = 2and K = 8 attributes. Like ccwrap in Fig. 1, the wrap-pers are instances of the LR wrapper classes (Kushmer-ick 1997). However, since we examine only the outputof the wrappers, the choices of wrappers is immaterial.These wrappers provide the `gold standard' againstwhich strawman's and rapture's performance werejudged. For a �xed site, call the sequence of P gath-ered pages p1, p2, . . . , pP . For each pi, we stored thequery qi from which pi was generated, and a wrapperwi that is correct for pi. We then invoked rapture foreach page in turn, using the previous page's wrapper:rapture(pi; wi�1; qi; fwj(pj)gPj=1 ; fqjgPj=1).Performance metrics. rapture should returntrue i� the site's wrapper does not changes at pi|ie. if wi = wi�1. We measure performance in terms of2� 2 matrix of integers:2AltaVista (ALTA), Bible (BIBL), CD-Plus, ComputerESP, Cinemachine, Cost-of-living calculator (COLC), Corelstock photographs, Expedia currency calculator, Fortune-500 list (FOR5), Internet address �nder, Irish Times, Lycos,Metacrawler, Monster Job Search, NewJour, CNET News,Rain or Shine, Shops.net, Time, Thrive, US Constitution(USCO), US News &World Report, US Patents, US IncomeTax code (USTX), Virtual Garden, Webcrawler, and Yahoopeople search.
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dateFigure 3: The experimental data: dots are fetchedpages (15 per site), and diamonds are wrapper changes.wi = wi�1 wi 6= wi�1predict true n1 n2predict false n3 n4Perfect performance yields n2 = n3 = 0. Sev-eral performance metrics are derived from this ma-trix (higher values indicate better performance):accuracy = n1+n4n1+n2+n3+n4 measures overall perfor-mance; precision = n1n1+n2 is the fraction of correcttrue responses; recall = n1n1+n3 is the fraction of un-changed wrappers for which the system responds true;and F = 2�recall�precisionrecall+precision combines precision and recallinto a single metric.Results. The wrappers for many sites (56%) did notchange at all; see Fig. 3. A total of 23 wrapper changeswere seen over the 6 months, for an average of 0.85 persite. For the 44% of sites with at least one wrapperchange, the average number of changes was 1.9, andthe maximum was 4.strawman performs perfectly for only 19% of thesites (BIBL, COLC, FOR5, USCO and USTX). Thus81% of the sites can not be handled by standard regres-sion testing. Note that strawman's overall accuracy israther high (64%) because so few wrappers changed; in-deed, a veri�er that always returns true has accuracyexceeding 99% (though it will have F = 0).Fig. 4 shows rapture's performance for � = 12 , andfor 22 settings for F and A. rapture outperformsstrawman for every parameter setting, with an aver-age gain of 30% in accuracy and 16% in F .Settings (1{3) compare the three dependency as-sumptions. Since equivalence generally performs best,setting (4-21) use equivalence as well.Settings (4{12) examine the importance of each fea-ture: each setting uses just a single feature. HTMLdensity appears to signi�cantly outperforms the oth-ers, because the attributes extracted by an incorrectwrapper are likely to contain HTML tags.Settings (13{21) examine whether any feature harmsperformance: each setting uses all except a particularfeature. None of the features stands out as being par-ticularly damaging. (4{12) generally outperform (1{3)and (13{21), suggesting that fewer features are better.
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Accuracy�100 F�1001 equiv p p p p p p p p p 82 902 entail p p p p p p p p p 79 883 indep p p p p p p p p p 65 794 equiv p � � � � � � � � 89 945 equiv � p � � � � � � � 87 936 equiv � � p � � � � � � 85 927 equiv � � � p � � � � � 84 918 equiv � � � � p � � � � 86 939 equiv � � � � � p � � � 97 9810 equiv � � � � � � p � � 79 8811 equiv � � � � � � � p � 81 9012 equiv � � � � � � � � p 80 8913 equiv � p p p p p p p p 81 9014 equiv p � p p p p p p p 81 9015 equiv p p � p p p p p p 81 9016 equiv p p p � p p p p p 81 9017 equiv p p p p � p p p p 81 9018 equiv p p p p p � p p p 81 9019 equiv p p p p p p � p p 84 9120 equiv p p p p p p p � p 81 8921 equiv p p p p p p p p � 81 9022 indep � � � � � p � � � >99 >99 �strawman 64 78Figure 4: rapture's performance for several settingsof F and A, and � = 12 .Setting (22) shows the best performing parameters:the independence assumption, and just the HTMLdensity feature. (22) is marked `�' to stress two ad-ditional changes to rapture: the number-of-tuples in-formation is ignored (line [a] in Fig. 2 is skipped); andfeaParams calculates the probability of the mean fea-ture value across all tuples for each attribute (insteadof a separate probability for each tuple).While these modi�cations are not well motivated, theresults are impressive: this modi�ed version of rap-ture performs nearly perfectly, with just 3 mistakesover 23,416 predictions, and gains over strawman of56% in accuracy and 28% in F . Furthermore, per-formance according to two additional metrics| n4n4+n3 ,the fraction of correct false responses, and n4n4+n2 , thefraction of noticed wrapper changes|is 344-fold betterthan strawman.Finally, we can change rapture's \pessimism" byvarying � . For example, in setting (1), varying � from1 to 0 decreases recall from 1 to 0.003, while precision(always very high) increases from 0.999 to 1.ConclusionsWe are motivated by the task of Internet informa-tion extraction, which is relevant to a wide variety of

information-management applications. Data-exchangestandards such as XML will simplify this process, butthey are not widely used. Furthermore, they do not en-tirely solve the problem, since they force the data con-sumer to accept the producer's ontological decisions.We conclude that the thorny problems of wrapper con-struction and maintenance will remain for some time.We have introduced the wrapper veri�cation prob-lem, and presented rapture, a fully-implemented,domain-independent, heuristic solution. Veri�cation isdi�cult because at many Internet sites, both the for-matting regularities used by wrappers, and the under-lying content, can change. Standard regression testingapproaches (e.g. see (Beizer 1995)) are inapplicable, asthey assume the underlying content is static.rapture uses a set of syntactic features to computethe similarity between a wrapper's output and the out-put for pages for which the wrapper is known to becorrect. rapture combines the similarities to derivean overall probability that the wrapper is correct. Ourexperiments demonstrate signi�cant performance im-provements over standard regression testing.We are currently exploring several extensions to ourtechniques. First, the features were selected in an ad-hoc manner; we are investigating additional features.Second, we are identifying additional probabilistic as-sumptions; while they were e�ective, the three as-sumptions examined here are intuitively unsatisfactory.Third, we assumed normal distributions throughout,but have not veri�ed this assumption, and some of thestatistical computations are not well founded; while thenormality assumption delivers reasonable performance,we are exploring alternatives, such as the Gamma dis-tribution, which may model our data more accurately.Finally, we are generalizing our techniques to object-oriented, semi-structured, and other non-relational datamodels. ReferencesBeizer, B. 1995. Black-Box Testing. John Wiley & Sons.Hsu, C., and Dung, M. 1998. Generating �nite-state trans-ducers for semistructured data extraction from the web. J.Information Systems 23(8).Knoblock, A.; Levy, A.; Duschka, O.; Florescu, D.; andKushmerick, N., eds. 1998. Proc. 1998 Workshop on AIand Information Integration. AAAI Press.Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997. Wrap-per Induction for Information Extraction. In Proc. 15thInt. Joint Conf. AI, 729{35.Kushmerick, N. 1997. Wrapper Induction for InformationExtraction. Ph.D. Dissertation, Univ. of Washington.Levy, A.; Knoblock, C.; Minton, S.; and Cohen, W. 1998.Trends and controversies: Information integration. IEEEIntelligent Systems 13(5).Muslea, I.; Minton, S.; and Knoblock, C. 1998. Wrap-per Induction for Semi-structured, Web-based InformationSources. In Proc. Conf. Automatic Learning & Discovery.Wiederhold, G. 1996. Intelligent Information Integration.Kluwer.


