Kushmerick, AAAI-99.

Regression testing for wrapper maintenance

Nicholas Kushmerick

Department of Computer Science, University College Dublin, Dublin 4, Ireland
nick@ucd.ie

Abstract

Recent work on Internet information integration as-
sumes a library of wrappers, specialized information ex-
traction procedures. Maintaining wrappers is difficult,
because the formatting regularities on which they rely
often change. The wrapper verification problem is to
determine whether a wrapper is correct. Standard re-
gression testing approaches are inappropriate, because
both the formatting regularities and a site’s underly-
ing content may change. We introduce RAPTURE, a
fully-implemented, domain-independent verification al-
gorithm. RAPTURE uses well-motivated heuristics to
compute the similarity between a wrapper’s expected
and observed output. Experiments with 27 actual In-
ternet sites show a substantial performance improve-
ment over standard regression testing.

Introduction

Systems that integrate heterogeneous information
sources have recently received substantial research at-
tention (e.g. (Wiederhold 1996; Knoblock et al. 1998;
Levy et al. 1998)). A ‘movie information’ integrator,
for example, might provide a single interface to the re-
view, cast list, and schedule information available from
dozens of Internet sites.

Such systems rely on a library of wrappers, specialized
procedures for extracting the content from a particular
site. For example, the site in Fig. 1 lists countries and
their telephone country codes. The information extrac-
tion task is to identify the (county, code) pairs in this
site’s pages. The ccwrap wrapper does so by scanning
for the delimiters --- and <I>---</I>, which
works because of a formatting regularity: countries
are bold and codes are italic.

Scalability is the main challenge to building wrap-
pers. While they are usually rather short programs,
writing wrappers by hand is tedious and error-prone.
Recently, there has been substantial progress on wrap-
per induction, techniques for automatically generat-
ing wrappers (Kushmerick, Weld, & Doorenbos 1997;
Kushmerick 1997; Muslea, Minton, & Knoblock 1998;
Hsu & Dung 1998).

Copyright (©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

However, this work ignores an important complica-
tion. Suppose the owners decide to ‘remodel’ the coun-
try/code site, so that pages look like pq4 instead of p, pe.
The ccwrap wrapper fails for pq, because the formatting
regularities ccwrap exploits no longer hold.

Wrapper maintenance is the task of repairing a bro-
ken wrapper. For example, given p4, a wrapper main-
tenance system would modify ccwrap to expect italic
countries and bold codes.

Wrapper maintenance is our ultimate goal. In this
paper, we define an important subproblem, the wrap-
per verification problem, and present RAPTURE, a fully-
implemented, domain-independent, heuristic algorithm
for solving this problem.

Wrapper verification involves determining whether a
wrapper correctly processes a given page. Our approach
is based on the black-box or regression testing paradigm
(e.g. (Beizer 1995)): we give the wrapper a page for
which the correct output is known, and check that the
wrapper in fact generates this output.

The simplest such regression tester is STRAWMAN. To
verify a wrapper, STRAWMAN invokes it on the page
returned in response to a given query, and also on an
earlier page for the same query when the wrapper was
known to be correct. STRAWMAN declares the wrapper
verified if the two outputs are identical.

While STRAWMAN works for some Internet sites, it
fails for most. STRAWMAN assumes that sites always
return the same information for a fixed query. This as-
sumption sometimes holds (e.g. a list of historical com-
modity prices), but is often violated (e.g. a site serving
today’s prices). Wrapper verification is thus compli-
cated by two moving targets: the formatting regulari-
ties of the pages, and the site’s underlying content.

In the remainder of this paper, we formalize the wrap-
per verification problem, describe RAPTURE,and empir-
ically compare RAPTURE’s performance to STRAWMAN.

Problem statement

Our work is based on an a simple yet generic informa-
tion extraction task: a site accepts a query, returning
a page in response. In our implementation, sites are
HTTP servers, queries are CGI form values, and pages
are HTML text. (While the our examples are posed in

www.manaraa.com

Argentina, 54
pa Bangladesh, 3582
Croatia, 385
Denmark, 45

Stop

El Salvador, 503
France, 33
Greece, 30

Stop

¥ Netscape !EIB ¥ Netscape !Elﬂ

¥ Netscape [F[E =

Hong Kong, §52 Kenya, 254

pC Ireland, 352 Libywa, 218
Japan, 81 Mewico, 52
Stop Stop

I ¥ Netscape [H[E[E

Po

Pq

p, SHTML source (p,'sand p.saresimilar):

<ATM_><BODY>
Ar gent i na</ B>,
Bangl adesh</ B>
Croatia <
Denmar k</ B>,

<| >54</ | >

<| >880</ | >
|

>385</ | >

<| >45</ | >

<HR><I >St op</ | ></ BODY></ HTML>

py SHTML source:

<HTML><BODY>

<l >Kenya</ | >,
<I >Li bya</ 1>,
<I >Mexi co</ | >

254</ B>

218</ B>

52</ B>

<HR><I >St op</ | ></ BODY></ HTM_>

The ccwrap wrapper iscorrect for p,, p,
and p,, but incorrect for py:

procedure ccwrap:
whil e there ae more occurrences of ‘’
skip to next ‘’
extrad courtry through rext ‘</ B>’
sKip to next ‘<I >’
extrad code through rext ‘</ | >’
return all extracted [@ourtry,codelJpairs

Figure 1: An example Internet site listing countries and their telephone country codes, and the ccwrap wrapper.

terms of HTML, this is for simplicity only. Our tech-
niques do not assume that pages are HTML.)

A wrapper is an information extraction procedure
tailored to a particular site. A wrapper takes as in-
put a page, and outputs a label, a representation of the
page’s content. We assume a standard relational data
model: a page’s label is a set of tuples, each a vector
of K attributes. For example, K = 2 for page p,, and
its label is ¢, = {(Argentina, 54), (Bangladesh, 880),
(Croatia, 385), (Denmark, 45)}.

For wrapper w and page p, we write w(p) = £ to
indicate that w returns label £ when invoked on p.

As we are concerned with cases in which a wrap-
per's output is wrong, we say that a w is cor-
rect for p iff p’s label is in fact w(p). Thus,
ccwrap is incorrect for pg, because ccwrap(pa) =
{(254, Libya), (218, Mexico), (52, Stop)} instead of
{(Hong Kong, 254), (Libya, 218), (Mexico, 52)}.

Wrapper verification is the problem of determining
whether a wrapper is correct. We assume access to
a collection of previously verified pages for which the
wrapper is known to be correct. We also assume that
we know the query used to generate each verified page.

The wrapper verification problem is the following.
The input is a wrapper w, page p, query ¢, sequence L =
{¢1,...,€n} of labels, and sequence @ = {q1,...,qm}
of queries. The output should be TRUE if w is correct
for p and FALSE otherwise.

The intent is that page p was retrieved using query ¢,
L contains the verified labels, and the page to which la-
bel ¢; € L corresponds was retrieved with ¢; € (). While
queries can be structured objects, RAPTURE treats them
“atomically”, only checking whether two queries are
equal.

The RAPTURE algorithm

RAPTURE is a domain-independent, heuristic algo-
raithm for solving the wrapper verification problem.
RAPTURE compares the verified labels with the label
output by the wrapper being verified.

Specifically, RAPTURE compares the value of various
numeric features of the strings comprising the label out-
put by the wrapper. For example, the word count fea-
ture is 2 for Great Britain, and 1 for Iraq. RAPTURE

computes the values of such features for each extracted
attribute.!

These values are compared with those for the veri-
fied label attributes. The mean feature values are cal-
culated, and then the probabilities that each extracted
attribute’s feature values agree with these values are
calculated. Each such probability captures the strength
of the evidence provided by a particular feature that
a specific attribute was correctly extracted. Finally,
the individual probabilities are combined, producing an
overall probability that the wrapper is correct for the
page.

We use upper-case letters (e.g. R) for random vari-
ables and lower-case (e.g. r) for values of such vari-
ables. pugr is R’s mean, and opr is R’s standard de-
viation. Let R be normally distributed with parame-
ters ug and og; Plr;ur;ogr] is the probability that R
equals 7, and P[<7;upg;ogr] is the probability that R
does not exceed r. These probabilities are taken to be
the probability and cumulative density functions of the

1(TZHR\2
e
and P[<r;ug;og] = [*__P[r'; pg;ogldr'.

normal distribution: P[r;ugr;or] =

Example

We begin by demonstrating RAPTURE on the coun-
try/code example. Suppose ccwrap has been verified
for pages p, and py,, and we want to verify ccwrap for
pages pe and pq. Since ccwrap is in fact correct for pe,
RAPTURE(p., ccwrap, {£,, ¢, }) should return TRUE; in
contrast, RAPTURE(pq, ccwrap, {a,¢,}) should return
FALSE. (We temporarily ignore the ¢ and @ inputs to
RAPTURE; we extend the algorithm below.)

Step 1: Number-of-tuple distribution parame-
ters. RAPTURE assumes that the number of tuples in
a label is described by the normally distributed ran-
dom variable N. RAPTURE computes the distribution
parameters uny and oy by treating the number of tu-
ples n in p, and p;, as samples of N (column 2 will be

' A wrapper’s execution can be undefined. For example,
ccwrap fails if it sees a with no subsequent , <I> or
</I>. For simplicity, we do not discuss this scenario further,
though our implementations of STRAWMAN and RAPTURE
immediately reject failed wrappers.

www.manaraa.com

Kushmerick, AAAI-99.

explained in Step 5):
n_ Pln;pn;on]

Ppal 4 0.44

vl 3 0.44
un=3.5
on=0.71

Step 2: Feature value distribution parameters.
RAPTURE examines the text fragments extracted from
p. and pp, and computes the values of a set of features.
These values are assumed to be normally distributed
for each feature/attribute combination.

In this example, we consider two features: word
count, and mean word length. For example, E1
Salvador has 2 words and mean word length 6. RAP-
TURE reasons about a unique random variable for each
feature/attribute combination: C; is the word count of
the first attribute (country), Cy is the word count of
the second attribute (code), Uy is the country’s mean
word length, and Us is the code’s mean word length.

RAPTURE uses p, and pp to estimate the 8 distri-
bution parameters. For example, uc, = 1.1 indicates
that country names usually contain a single word, while
oy, = 0.52 indicates that the mean word length of codes
have relatively low variance (columns 3 and 5 will be
explained in Step 5):

country c P[C; HCy30C, } u P[u; MU, 00, }
Argentina | 1 0.98 9 0.12
Pa| Bangladesh | 1 0.98 10 0.057
China 1 0.98 5 0.12
Denmark 1 0.98 7 0.22
El Salvador| 2 0.081 6 0.19
pb| France 1 0.98 6 0.19
Greece 1 0.98 6 0.19
pe,=1.1 po,=1.0
oc,=0.38 oy, =1.8
code ¢ Ple;poy;00,] 4 P puy;ou,]
54 1 1.0 2 0.54
Pa 880 1 1.0 3 0.42
385 1 1.0 3 0.42
32 1 1.0 2 0.54
503 1 1.0 3 0.42
Pb 33 1 1.0 2 0.54
30 1 1.0 2 0.54
pe,=1.0 pu,=2.4
(7(;2:0.0 (7[]2:0.53

Step 3: Feature probabilities. @ RAPTURE uses
the distribution parameters from Steps 1 2 to compare
ccwrap’s labels for p, and py, with those for p. and pq.
Recall that ccwrap is correct for p. but incorrect for pq.
RAPTURE begins by examining the number of tuples
extracted by ccwrap: n = 3 for both pages. In Step
1, we estimated N’s distribution parameters uy = 3.5
and oy = 0.71. We can thus compute the probability
of the observed number of tuples n for each page:

n_ Pln;pv;on]

pe[3 0.44

pal 3 0.44

RAPTURE then computes the feature values for the
extracted fragments. Using the distribution parame-
ters from Step 2, we compute the probability of each

3

observed feature value. In the example, we compute
12 probabilities each for p. and pq: 1 per feature, for
each of the 3 extracted fragments, for each of the 2 at-
tributes. For example, P[2; uc,; 00,] = 0.081 indicates
that a country name is somewhat unlikely to contain 2
words, while P[4; up,; op,] = 9.9%x 1074 indicates that
the mean word length of a code is rarely 4.

country ¢ Plejpci;o0,] u Pluspu,;ou,]
Hong Kong| 2 0.081 4 0.057
pe| Ireland | 1 0.98 7 0.22
Japan 1 0.98 5 0.12
254 1 0.98 3 0.020
Pd 218 1 0.98 3 0.020
52 1 0.98 2 | 5.1x10°?
code ¢ Plei picy;00,] u Plu; v, ov,)
852 1 1.0 3 0.42
pe| 353 1 1.0 3 0.42
81 1 1.0 2 0.54
Libya | 1 1.0 5| 7.0x107°
pda| Mexico | 1 1.0 6 | 1.5x1071'°
Stop 1 1.0 4| 9.9x107*

Step 4: Verification probability. FEach probabil-
ity in Step 3 represents the evidence from one feature
that a particular text fragment is correct. RAPTURE
now combines this evidence conjunctively, deriving an
overall verification probability that ccwrap is correct.
RAPTURE assumes independence, and derives the verifi-
cation probability by multiplying the conjuncts’ proba-
bilities. (Our experiments consider other assumptions.)
The following table shows the verification probability v
for each page (column 3 will be explained in Step 5):

probabilities from Step 3 v P[<wv;pv;ov]
pe[44, 081, .08, .98, 057, .22, 4.9x10 ° 0.26
12, 1,1, 1, .42, .42, .54
pal.44, .98, .98, .98, .020, .020,/8.8x10~*° 0.18
5.1x107%, 1, 1, 1, 7.0x107°,
1.5x107 1'%, 9.9x10~*
Note that pq has a low v because the mean word length
of the countries is so small, and so large for the codes.
Step 5: Evaluating verification probability. As
expected, ccwrap is much more likely to be correct for
p. than for pg. To complete our analysis, we could
simply compare such probabilities to a fixed threshold.
However, since we assumed independence and normal-
ity, the calculated verification probabilities may deviate
greatly from their ‘true’ values.

To address this problem, we treat each verification
probability v as a sample of a normal random variable
V. To calculate uy and oy, we repeat Step 4 for p,
and py:

probabilities from Steps 1 2 v
pa[-44, 08, 98, .98, .98, 12, 057, .12, 22, 1] 3.8x10 °
1,1, 1, .54, 42, .42, .54

pn|-44, 081, 98, 98, 19, 19, 19, 1, 1, 1,] 2.9x10 °
42, .54, .54
py =1.6x10"°
oy =1.8x10"°

At this point, RAPTURE can compare the verification
probabilities with those of p. or pq. The simplest ap-
proach is to return FALSE if v < uy. However, we would

www.manaraa.com

Kushmerick, AAAI-99.

function RAPTURE(wrapper w, page p, label set L)
if LABELPR(w(p), L) < 7 return FALSE else return TRUE
function LABELPR(label ¢, label set L)
(uv,ov) < VERIFPRPARAMS(L)
return P[<VERIFPR(Y, L); uv; ov]
function VERIFPRPARAMS(label set L)
probs < {VERIFPR({,L) | £€L}
compute gy and oy from probs
return (pv,ov)
function VERIFPR(label ¢, label set L)
(uv.on), {.. (pr 08,), ...} « FraParams(L)
q < P[lf]; un;on]
probs « {q} [3
for each feature f; € F
for each attribute 1 < k < K
for each tuple (..., sg,...) €/
q P[fi(sk)§ HFE; 55 UFi,k]
probs <« probsU {q}
return A(probs) [b]
function FEAPArRAMS(label set L)
values « {|¢| | £€ L} [c]
compute un and oy from values
for each feature f; € F
for each attribute 1 < k < K
values < {fi(s) | s in column % of a label in L}
compute pr; , and or, , from values

return {(un,on), { cey <I’LFi,k’0Fi,k> I }

Figure 2: The RAPTURE algorithm.

like to be able to adjust RAPTURE’s ‘pessimism’, mak-
ing it more or less likely to declare a wrapper correct.
We thus use the cumulative normal density function to
evaluate v. Specifically, the third column in Step 4 lists
the probabilities that V' < v, for p. and pq. RAPTURE
then compares this probability to a threshold 7. For

example, if 7 = I, RAPTURE returns TRUE for p. and

FALSE for pq. Note that 7 = % corresponds to the sim-

ple approach of returning FALSE if v < py .

Details

With the ideas underlying RAPTURE now in place, we
list the RAPTURE algorithm in detail; see Fig. 2. The
main subroutine is VERIFPR, which computes a label’s
verification probability v.

RAPTURE refers to three parameters: a threshold 7
against which verification probabilities are compared; a
feature set F, where each feature is function from a
string to a number; and a dependency assumption
A, a function from a set of numbers to a number.

Feature set F

RAPTURE is parameterized by a feature set F =
{..., fi,...}. Each feature f; is a function from a string
to a number. Ideally, features can be rapidly computed
(so RAPTURE runs quickly) and are not domain specific
(so RAPTURE can be applied without modification to
new sites).

4

We used the following nine features in our experi-
ments (numbers in parentheses are values for the string
‘20 Maple St.’): digit density: fraction of numeric
characters (% = 0.167); letter density, fraction of

2
letters (% = (0.583); upper-case density, fraction of
upper-case letters (% = 0.167); lower-case density

(% = 0.417); punctuation density, (% = 0.083);
HTML density, fraction of < and > characters (% =
0); length (12); word count (3); and mean word

length (332 =3).

Dependency assumption A

Abstractly, RAPTURE reasons about F events e;, ...,
ep. eo7 might represent the event ‘the number of words
in the third extracted country is consistent with the
countries extracted from the verified pages’. The al-
gorithm has derived Pleq], ..., Pleg], and must com-
pute the probability that all feature values are consis-
tent with the verified labels, P[A;e;]. RAPTURE uses the
dependency assumption A to compute this probability;
see Step 4 above and line [b] in Fig. 2.

Computing P[A;e;] exactly requires knowledge of the
dependencies between the e;. In principle, this infor-
mation could be derived for our domain, resulting in
a set of conditional probabilities for exactly calculat-
ing P[A;e;] = Ple1|Plealer]---Plegleg—1,...,e1]. But
as this analysis would be extremely cumbersome, we
instead simply make assumptions about the dependen-
cies of the domain. While the resulting probability can
be inaccurate, our experiments demonstrate that these
assumptions yield reasonable performance.

We have investigated three specific assumptions:

the independence, entailment, and equivalence assump-
tions. Each corresponds to a particular function for
computing P[A;e;] from Pleq], ..., Pleg].
Independence assumption: If the e; are indepen-
dent, then P[A;e;] =[], Ple;].
Entailment assumption: If there exists an 1 < I <
FE such that e; logically entails every other e;, then
P[A;e;] = min; Ple;]. The entailment assumption
presumes that one piece of evidence (e.g., perhaps the
number of extraced tuples) completely determines the
rest.

Equivalence assumption: If the e; are all logically
equivalent, then P[A;e;] = Ple1] = -+ = Pleg].
Under the equivalence assumption, any piece of evi-
dence is as reliable as any other. This assumption can
not be invoked directly, because the P[e;] are often un-
equal. RAPTURE treats the P[e;] as noisy samples of the
‘true’ value, which is estimated as the sample’s geomet-

ric mean: P[Aze;] = ([]; P[ei])l/E.

Using ¢ and Q)

In the presentation so far, we have ignored RAPTURE’S ¢
and @ inputs. Recall that () is the sequence of queries
used to generated the verified labels L, and ¢ is the
query from which input page p was generated.

www.manaraa.com

Kushmerick, AAAI-99.

RAPTURE uses () and ¢ to improve verification in
a relatively simple manner. The intuition is that the
number of tuples in p’s label often depends on ¢. If the
site lists people, for example, queries for Jones return
more hits than for Jablonsky. If this dependency is
ignored, RAPTURE will assess the evidence provided by
the number of tuples (P[n; un,on]) incorrectly.

Extending RAPTURE to make use of this information
is straightforward. Arguments @) and ¢ are added to
every function, and then line [c] in Fig. 2 is changed
so that only verified labels with query ¢ are used to
estimate uyn and on: ‘values < {|¢;| | ;€L A q;=q} .

Evaluation

Methodology. We tested RAPTURE on 27 actual In-
ternet sites. We systematically varied F, A and 7, and
compared RAPTURE’s performance with the STRAWMAN
algorithm described earlier. Our experiment was de-
signed to model the scenario in which the goal is to con-
tinually monitor whether a site’s wrapper has changed.

The sites were chosen to be representative of the sort
that the information integration community wants to
wrap.? Fifteen queries were selected for each site. Each
query is a keyword appropriate to the site. For example,
ALTA’s queries included frog, dog, happy, apple and
tomato. While many sites allow complex queries, we do
not think that focusing on keyword queries invalidates
our verification results.

As shown in Fig. 3, the 27 x 15 queries were issued
approximately every 3 days over 6 months (5-10/1998);
in total, 23,416 pages were gathered.

We then generated a wrapper for every page using
semi-automated techniques, extracting between K = 2
and K = 8 attributes. Like ccwrap in Fig. 1, the wrap-
pers are instances of the LR wrapper classes (Kushmer-
ick 1997). However, since we examine only the output
of the wrappers, the choices of wrappers is immaterial.

These wrappers provide the ‘gold standard’ against
which STRAWMAN’s and RAPTURE’S performance were
judged. For a fixed site, call the sequence of P gath-
ered pages p1, p2, ..., pp. For each p;, we stored the
query ¢; from which p; was generated, and a wrapper
w; that is correct for p;. We then invoked RAPTURE for
each page in turn, using the previous page’s wrapper:

P P
RAPTURE(py, wi 1, 03, {w; ()}, Aas} o).

Performance metrics. RAPTURE should return
TRUE iff the site’s wrapper does not changes at p;
ie. if w; = w;_1;. We measure performance in terms of
2 x 2 matrix of integers:

?AltaVista (ALTA), Bible (BIBL), CD-Plus, Computer
ESP, Cinemachine, Cost-of-living calculator (COLC), Corel
stock photographs, Expedia currency calculator, Fortune-
500 list (FORA5), Internet address finder, Irish Times, Lycos,
Metacrawler, Monster Job Search, NewJour, CNET News,
Rain or Shine, Shops.net, Time, Thrive, US Constitution
(USCO), US News & World Report, US Patents, US Income
Tax code (USTX), Virtual Garden, Webcrawler, and Yahoo
people search.

site

[°

YAHP L L L L L L L hd L L J

23/4/98 14/5/98 04/6/98 25/6/98 16/7/98 07/8/98 28/8/98 18/9/98 09/10/98 31/10/98
date

Figure 3: The experimental data: dots are fetched
pages (15 per site), and diamonds are wrapper changes.

w; = wi—1 Wi F wi—1
predict TRUE ni 2
predict FALSE n3 T4
Perfect performance yields no = mn3 = 0. Sev-

eral performance metrics are derived from this ma-
trix (higher values indicate better performance):
accuracy = 1141 measures overall perfor-

. _n1+n2+n374{n4 . R
mance; precision = L is the fraction of correct
n

ni+ns
ni+ng

TRUE responses; recall = is the fraction of un-
changed wrappers for which the system responds TRUE;

and F = Zrecallprecision ., i precision and recall
recall+precision

into a single metric.

Results. The wrappers for many sites (56%) did not
change at all; see Fig. 3. A total of 23 wrapper changes
were seen over the 6 months, for an average of 0.85 per
site. For the 44% of sites with at least one wrapper
change, the average number of changes was 1.9, and
the maximum was 4.

STRAWMAN performs perfectly for only 19% of the
sites (BIBL, COLC, FOR5, USCO and USTX). Thus
81% of the sites can not be handled by standard regres-
sion testing. Note that STRAWMAN'’s overall accuracy is
rather high (64%) because so few wrappers changed; in-
deed, a verifier that always returns TRUE has accuracy
exceeding 99% (though it will have F' = 0).

Fig. 4 shows RAPTURE’s performance for 7 =]5, and
for 22 settings for F and A. RAPTURE outperforms
STRAWMAN for every parameter setting, with an aver-
age gain of 30% in accuracy and 16% in F.

Settings (1 3) compare the three dependency as-
sumptions. Since equivalence generally performs best,
setting (4-21) use equivalence as well.

Settings (4-12) examine the importance of each fea-
ture: each setting uses just a single feature. HTML
density appears to significantly outperforms the oth-
ers, because the attributes extracted by an incorrect
wrapper are likely to contain HTML tags.

Settings (13—21) examine whether any feature harms
performance: each setting uses all ezcept a particular
feature. None of the features stands out as being par-
ticularly damaging. (4-12) generally outperform (1-3)
and (13 21), suggesting that fewer features are better.

www.manaraa.com

Kushmerick, AAAI-99.

S 2 g s 5% o

E - E

S yiiTE. 20 s

HEEE RS R

o Ei'ﬁ-‘ﬁ:%S:‘a X
ST EER -8 8
g s 58 97 yu S v w £ & —
E ®Ltop EEF 5L x
f T 2D a3 a3z E <4 K
| [equiv v vV V VV V[§ 90
2 lentaill / v/ vV VAV VAV VAV TI 88
3lindep vV VVVVVVVVI65 T
4 lequiv / X X X X x X X x|8) 94
5lequiv X {/ X X x X x X x|87 93
6 |equiv X X 4/ X X X x x x|85 92
7lequiv x x X / x x x x x|84 91
8 lequiv X X X X 4/ X x x x|[86 93
9 lequiv x x X x x y/ x x x|97 98
10jequiv X X X X X X / x x|79 88
11lequiv X X X X X X X / x| 81 90
12]equiv X X X X X X X X 4/[80 89
13lequiv X vV vV V/ VvV VvV V VvV V|8 90
ldlequiv / X v/ v/ vV VvV vV V|8 90
15lequiv v/ v/ X / vV vV vV VvV V| 81 90
16]equiv v/ v/ v/ X vV vV vV vV V|81 90
17lequiv v/ v/ vV V/ X vV vV VvV V| 81 90
18lequiv / v/ vV vV VvV X v/ vV V|81 90
19lequiv / vV VvV vV V X v/ /| 84 91
20|equiv / v/ VvV V V V V X V|81 89
21lequiv / V/ vV V V V V V x| 81 90
22[indep X X X X X 4/ X x x[>99 >99]x
STRAWMAN 64 78

Figure 4: RAPTURE’s performance for several settings
of F and A4, and 7 =]5

Setting (22) shows the best performing parameters:
the independence assumption, and just the HTML
density feature. (22) is marked ‘%’ to stress two ad-
ditional changes to RAPTURE: the number-of-tuples in-
formation is ignored (line [a] in Fig. 2 is skipped); and
FEAPARAMS calculates the probability of the mean fea-
ture value across all tuples for each attribute (instead
of a separate probability for each tuple).

While these modifications are not well motivated, the
results are impressive: this modified version of RAP-
TURE performs nearly perfectly, with just 3 mistakes
over 23,416 predictions, and gains over STRAWMAN of
56% in accuracy and 28% in F. Furthermore, per-
formance according to two additional metrics——=24

na+ng’
the fraction of correct FALSE responses, and n4’jj‘n27 tﬁe
fraction of noticed wrapper changes is 344-fold better
than STRAWMAN.

Finally, we can change RAPTURE’s “pessimism” by
varying 7. For example, in setting (1), varying 7 from
1 to 0 decreases recall from 1 to 0.003, while precision

(always very high) increases from 0.999 to 1.

Conclusions

We are motivated by the task of Internet informa-
tion extraction, which is relevant to a wide variety of

6

information-management applications. Data-exchange
standards such as XML will simplify this process, but
they are not widely used. Furthermore, they do not en-
tirely solve the problem, since they force the data con-
sumer to accept the producer’s ontological decisions.
We conclude that the thorny problems of wrapper con-
struction and maintenance will remain for some time.

We have introduced the wrapper verification prob-
lem, and presented RAPTURE, a fully-implemented,
domain-independent, heuristic solution. Verification is
difficult because at many Internet sites, both the for-
matting regularities used by wrappers, and the under-
lying content, can change. Standard regression testing
approaches (e.g. see (Beizer 1995)) are inapplicable, as
they assume the underlying content is static.

RAPTURE uses a set of syntactic features to compute
the similarity between a wrapper’s output and the out-
put for pages for which the wrapper is known to be
correct. RAPTURE combines the similarities to derive
an overall probability that the wrapper is correct. Our
experiments demonstrate significant performance im-
provements over standard regression testing.

We are currently exploring several extensions to our
techniques. First, the features were selected in an ad-
hoc manner; we are investigating additional features.
Second, we are identifying additional probabilistic as-
sumptions; while they were effective, the three as-
sumptions examined here are intuitively unsatisfactory.
Third, we assumed normal distributions throughout,
but have not verified this assumption, and some of the
statistical computations are not well founded; while the
normality assumption delivers reasonable performance,
we are exploring alternatives, such as the Gamma dis-
tribution, which may model our data more accurately.
Finally, we are generalizing our techniques to object-
oriented, semi-structured, and other non-relational data
models.

References
Beizer, B. 1995. Black-Boz Testing. John Wiley & Sons.
Hsu, C., and Dung, M. 1998. Generating finite-state trans-

ducers for semistructured data extraction from the web. J.
Information Systems 23(8).

Knoblock, A.; Levy, A.; Duschka, O.; Florescu, D.; and
Kushmerick, N.; eds. 1998. Proc. 1998 Workshop on Al
and Information Integration. AAAI Press.

Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997. Wrap-
per Induction for Information Extraction. In Proc. 15th
Int. Joint Conf. Al 729-35.

Kushmerick, N. 1997. Wrapper Induction for Information
Extraction. Ph.D. Dissertation, Univ. of Washington.
Levy, A.; Knoblock, C.; Minton, S.; and Cohen, W. 1998.
Trends and controversies: Information integration. IEEE
Intelligent Systems 13(5).

Muslea, I.; Minton, S.; and Knoblock, C. 1998. Wrap-
per Induction for Semi-structured, Web-based Information
Sources. In Proc. Conf. Automatic Learning & Discovery.
Wiederhold, G. 1996. Intelligent Information Integration.
Kluwer.

www.manaraa.com

